
 page 1

SOFTWARE QUALITY METRICS
for

Object Oriented
System Environments

SATC-TR-95-1001

JUNE 1995

National Aeronautics and Space Administration
Goddard Space Flight Center, Greenbelt Maryland 20771

S
oftware

 A
ssurance

 T
echnology

 C
enter

 page 2

TABLE OF CONTENTS

I. Introduction

II. Metrics Overview

III. Object-Oriented Overview

IV. Metrics for Object-Oriented Systems
A. Metric Evaluation Criteria
B. Traditional Metrics for Object-Oriented Systems

1. Methods
Metric 1: Cyclomatic Complexity
Metric 2: Lines of Code

C. Object-Oriented Specific Metrics
1. Classes

a. Methods
Metric 3: Weighted Methods per Class (WMC)

b. Messages
Metric 4: Response for a Class (RFC)

c. Cohesion
Metric 5: Lack of Cohesion of Methods (LCOM)

d. Coupling
Metric 6: Coupling Between Object Classes (CBO)

2. Inheritance
Metric 7: Depth of Inheritance Tree (DIT)
Metric 8: Number of Children (NOC)

D. Example
E. Summary

1. Metric Summary
2. COTS for Recommended Object-Oriented Metrics

V. Conclusions

Appendix A: Comprehensive Listing of Object-Oriented Metrics

Appendix B: Object-Oriented Detailed Discussion
1. Object

a. States/Attributes
b. Operations
c. Object Example

2. Class
3. Inheritance
4. Messages
5. Cohesion
6. Polymorphism
7. Object-Oriented Languages
8. Terminology

Appendix C: Cots Packages

Appendix D: Object-Oriented References

 page 3

TABLES

Table 1: SATC Metrics for Object-oriented Systems
Table 2: Key Object-Oriented Definitions
Table 3: Summary of Recommended Object-Oriented Metrics
Table 4: Object-Oriented Metrics Supported by COTS

FIGURES

Figure 1: Pictorial Description of Key Object-Oriented Terms
Figure 2: Geometric Classes with Attribute, Operations and Methods
Figure 3: Pseudocode for Perimeter of an Equilateral Triangle
Figure 4: Notation of an Object
Figure 5: Sample Object
Figure 6: Conceptual View
Figure 7: Class with Objects
Figure 8: Inheritance Network
Figure 9: Message Passing

 page 4

Software Quality Metrics for Object-Oriented System Environments

I. INTRODUCTION

Object-oriented analysis and design are popular concepts in today’s software development environment. They
are often heralded as the silver bullet for solving software problems,; while in reality there is no silver bullet,
object-oriented has proved its value for systems that must be maintained and modified. Object-oriented
software development requires a different approach from more traditional functional decomposition and data
flow development methods. While the functional and data analysis approaches commence by considering the
systems behavior and/or data separately; object-oriented analysis approaches the problem by looking or system
entities that combine them. Object-oriented analysis and design focuses on objects as the primary agents
involved in a computation; each class of data and related operations are collected into a single system entity.

The concepts of software metrics are well established, and many metrics relating to product quality have been
developed and used. The SATC applies a model for evaluating software quality that has four goals:
(1) Stability of Requirements and Design, (2) Product Quality, (3) Testing Effectively, and
(4) Implementation Effectively. With object-oriented analysis and design methodologies gaining popularity, it
is time to start investigating object-oriented metrics with respect to these goals. We are interested in the
answer to the following questions:

• What concepts and structures in object-oriented affect the quality of the software?
• Can traditional metrics measure the critical object-oriented structures?
• If so, are the threshold values for the metrics the same for object-oriented designs as for

functional/data designs?
• Which of the many new metrics found in literature are useful to measure the critical concepts in

object-oriented?

This report summarizes results of the SATC’s research on metrics for object-oriented systems. We start with a
brief discussion of the metrics recommended by the SATC for object-oriented systems. These metrics include
modifications of “traditional” metrics as well as “new” metrics for specific object-oriented structures. Since the
object-oriented metrics require a cursory understanding of the object-oriented concepts, Section III presents a
pictorial representation of the basic object-oriented structures and defines the key terms. A more extensive
explanation of the object-oriented structures is in Appendix B and is referenced by Section III. In Section IV,
we discuss the proposed object-oriented metrics with respect to the SATC Software Quality Model,
specifically, their relationship to the attributes of quality (Goal 2: Product Quality -Structure/Architecture,
Reuse, Maintainability). In the summary, we will address the availability of COTS packages to facilitate the
collection of these metrics. Details on the COTS packages are given in Appendix C.

II. OVERVIEW - OBJECT-ORIENTED METRICS

In this report, the SATC documents its research into the current status of object-oriented metrics. The
research was done by surveying the literature on object-oriented metrics then applying the SATC experience in
traditional software metrics to select the object-oriented metrics that support the goal of measuring design and
code quality. In addition, we required that a metric be feasible and have a clear relationship to the object-
oriented structures being measured. At this time, many proposed object-oriented metrics lack a theoretical
basis and have not yet been validated. Some of these metrics are too labor intensive to collect, or are too
dependent on the implementation technology. The object-oriented metrics proposed by the SATC can be
related to desirable software qualities.

The SATC’s approach to identifying a set of object-oriented metrics was to focus on the primary, critical
constructs of object-oriented design and to select metrics that apply to those areas. The suggested metrics are

 page 5

supported by most literature and some object-oriented tools. The metrics evaluate the object-oriented concepts:
methods; classes; coupling; and inheritance. The metrics focus on internal object structure that reflects the
complexity of each individual entity and on external complexity that measures the interactions among entities.
The metrics measure computational complexity encompassing the efficiency of an algorithm and the use of
machine resources, as well as psychological complexity factors that affect the ability of a programmer to
create, modify, and comprehend software and the end user to effectively use the software.

We support the use of three traditional metrics and present six new metrics specifically for object-oriented
systems. The SATC has found that there is considerable disagreement in the field about software quality
metrics for object-oriented systems. Some researchers and practitioners contend traditional metrics are
inappropriate for object-oriented systems. There are valid reasons for applying the traditional metrics
however, if it can be done. The traditional metrics have been widely used, they are well understood by
researchers and practitioners, and their relationships to software quality attributes have been validated.
Table 1 presents an overview of the metrics proposed by the SATC for object-oriented systems. The SATC
supports the continued use of traditional metrics, but within the structures and confines of object-oriented
systems. The first three metrics in Table 1 are examples of how traditional metrics can be applied to the
object-oriented structure of methods instead of functions or procedures. The next six metrics are specifically
for object-oriented systems and the object-oriented construct applicable is indicated.

SOURCE METRIC OBJECT-ORIENTED
CONSTRUCT

Traditional CC Cyclomatic complexity Method
Traditional SIZE Lines of Code Method
Traditional COM Comment percentage Method
NEW Object-Oriented WMC Weighted methods per class Class/Method
NEW Object-Oriented RFC Response for a class Class/Message
NEW Object-Oriented LCOM Lack of cohesion of methods Class/Cohesion
NEW Object-Oriented CBO Coupling between objects Coupling
NEW Object-Oriented DIT Depth of inheritance tree Inheritance
NEW Object-Oriented NOC Number of children Inheritance

Table 1: SATC Metrics for Object-Oriented Systems

III. OVERVIEW - OBJECT-ORIENTED STRUCTURES

A brief description of the structure is given in this section using the pictorial description in Figure 1 and the
definitions in Table 2. Appendix B contains a more comprehensive discussion of object-oriented concepts
with additional diagrams of the structures. References to the detailed discussion in Appendix B is indicated by
[] .

The new object-oriented development methods have their own terminology to reflect the new structural
concepts. Referencing Figure 1, an object-oriented system starts by defining a class (Class A)[APP B.2] that
contains related or similar attributes [APP B.1.1] and operations (some operations are methods) [APP B.1.2].
The classes are used as the basis for objects (Object A1) forming hierarchical trees. An object inherits all of
the attributes and operations from its parent class, in addition to having its own attributes and operations.[APP
B.3]. An object can also become a class for other objects (Object A1 -> Class B), forming another branch in
the hierarchical tree structure. When an object is applied and contains data or information, it is an
instantiation of the object. Objects interact or communicate by passing messages [APP B.4]. When a message

 page 6

is passed between two objects, the object are coupled. These specific terms are defined in Table 1; a more
comprehensive listing is contained in Appendix B.

CLASS A

attributes

operations

Object B2

attributes

operations

Object A3

attributes

operations

Object A2

attributes

operations

Object B1

attributes

operations

Object A1
CLASS B

attributes

operations
message 1

message 2

Object A1 is an application of CLASS A
 inherits CLASS A attributes

 inherits CLASS A operations

Object A1 is also CLASS B

An instantiation ofObject B2 contains data and
 inherits CLASS B attributes

 inherits CLASS B operations
 inherits CLASS A attributes

 inherits CLASS A operations

Object B1 is coupled to Object A1 through message 1
Object B1 is coupled to Object B2 through message 2

Figure 1: Pictorial Description of Object-Oriented Terms

Class A set of objects that share a common structure and common behavior manifested by a set of
methods; the set serves as a template from which objects can be instantiated (created).[APP
B.2]

Cohesion The degree to which the methods within a class are related to one another. [APP B.5]

 page 7

Coupling Object X is coupled to object Y if and only if X sends a message to Y. [APP B.4]

Inheritance A relationship among classes, wherein one class shares the structure or methods defined in
one (for single inheritance) or more (for multiple inheritance) other classes. [APP B.3]

Instantiation The process of creating an instance of the object and binding or adding the specific data.
[APP B.3]

Message A request that an object makes of another object to perform an operation. [APP B.4]

Method An operation upon on object, defined as part of the declaration of a class. Methods are
operations, but not all operations are actual methods declared for a specific class. [APP B.1.2]

Object An instantiation of some class which is able to save a state (information) and which offers a
number of operations to examine or affect this state. [APP B.1]

Table 2: Key Object-Oriented Terms for Metrics

IV. METRICS FOR OBJECT-ORIENTED SYSTEMS

A. Metric Evaluation Criteria

While metrics for the traditional functional decomposition and data analysis design approach deal with the
design structure and/or data structure independently, object-oriented metrics must be able to focus on the
combination of function and data as an integrated object. The evaluation of the utility of a metric as a
quantitative measure of software quality must relate to the SATC Software Quality Model, although we feel
strongly we have selected metrics that are useful in a wide range of models. The second goal of the SATC
model is the measurement of Product (Code) Quality. The metrics selected are applicable to the attributes that
support this goal. The object-oriented metric criteria, therefore, are the evaluation of the following areas:

• Efficiency of the implementation of the design - Were the constructs efficiently designed?
• Complexity - Could the constructs be used more effectively to decrease the architectural complexity?
• Understandability/Usability - Does the design increase the psychological complexity?
• Reusability/Application specific - Is the design application specific?
• Testability/Maintenance - Does the structure enhance testing?

Whether a metrics is “traditional” or “new”, it must be effective in measuring on of these areas. As each
metric is presented, we will briefly discuss its applicability to these areas.

B. Traditional Metrics

B.1: Methods
In an object-oriented system, traditional metrics are generally applied to the methods that comprise the
operations of a class. A method is a component of an object that operates on data in response to messages and
is defined as part of the declaration of a class [APP B.1.2]. Methods reflect how a problem is broken up and
the capabilities other classes expect of a given class. Two traditional metrics are discussed here: cyclomatic
complexity and line counts (size).

• METRIC 1: Cyclomatic Complexity (CC)

 page 8

The cyclomatic complexity (McCabe) is used to evaluate the application of an algorithm. A method
with a low cyclomatic complexity may imply that decisions are deferred through message passing, not
that the methods is not complex. The cyclomatic complexity cannot be used to measure the
complexity of a class because of inheritance, but the cyclomatic complexity of individual methods can
be combined with other measures to evaluate the complexity of the class. Although this metric is
specifically applicable to the evaluation of complexity, it also is related to all of the other attributes.

• METRIC 2: Line Count ==> Size/Documentation

Various line counts are also applied to methods. These include counting all physical lines of code,
the number of statements and the number comment lines. Thresholds for evaluating the meaning of
size measures may have to vary greatly depending on the coding language. However, since size
limitations are based on ease of understanding by the developers and maintainers, routines of large
size will always pose a higher risk in attributes such as Understandability, Reusability, and
Maintainability. This metric can be used to evaluate all the attributes, but most often is a measure of
Understandability, Reusability, and Maintainability.

• METRIC 3: Comment Percentage

The Line Count metric can be expanded to include a count of the number of comments, both on-line
and stand-alone. The comment percentage is calculated by the total number of comments divided by
the total lines of code less the number of blank lines. Since comments assist developers and
maintainers, this metric is used to evaluate the attributes of Understandability, Reusability, and
Maintainability.

C. Object-Oriented Specific Metrics

As indicated in Appendix A, many different metrics have been proposed for object-oriented systems. The
object-oriented metrics that were chosen measure principle structures that, if they are improperly designed,
negatively affect the design and code quality attributes.

The selected object-oriented metrics are primarily applied to the concepts of classes, coupling, and inheritance.
Preceding each metric, a brief description of the object-oriented structure is given with references to Appendix
B. For some of the object-oriented metrics discussed here, multiple definitions are given. As with traditional
metrics, researchers and practitioners have not reached a common definition or counting methodology. In
some cases, the counting method for a metric is determined by the software analysis package being used to
collect the metrics.

C.1 Class
A class is a template from which objects can be created. This set of objects share a common structure and a
common behavior manifested by the set of methods [APP B.2, Figure 5]. Three class metrics described here
measure the complexity of a class using the class’s methods, messages and cohesion.

C.1.1 Method
A method is an operation upon an object [APP B.1.2].

 page 9

• METRIC 4: Weighted Methods per Class (WMC)

The WMC is a count of the methods implemented within a class or the sum of the complexities of the
methods (method complexity is measured by cyclomatic complexity). The second measurement is
difficult to implement since not all methods are assessable within the class hierarchy due to
inheritance. The number of methods and the complexity of the methods involved is a predictor of
how much time and effort is required to develop and maintain the class. The larger the number of
methods in a class, the greater the potential impact on children since children will inherit all the
methods defined in a class. Classes with large numbers of methods are likely to be more application
specific, limiting the possibility of reuse. This metric measures usability and reusability.

C.1.2 Message
A message is a request that an object makes of another object to perform an operation. The operation executed
as a result of receiving a message is called a method. The next metric looks at methods and messages within a
class [APP B.4].

• METRIC 5: Response for a Class (RFC)

The RFC is the cardinality of the set of all methods that can be invoked in response to a message to
an object of the class or by some method in the class. This includes all methods accessible within the
class hierarchy. This metric looks at the combination of the complexity of a class through the number
of methods and the amount of communication with other classes. The larger the number of methods
that can be invoked from a class through messages, the greater the complexity of the class. If a large
number of methods can be invoked in response to a message, the testing and debugging of the class
becomes complicated since it requires a greater level of understanding on the part of the tester. A
worst case value for possible responses will assist in the appropriate allocation of testing time. This
metric evaluations system design as well as the usability and the testability.

C.1.3 Cohesion
Cohesion is the degree to which methods within a class are related to one another and work together to provide
well-bounded behavior [APP B.5]. Effective object-oriented designs maximize cohesion since it promotes
encapsulation. The third class metric investigates cohesion.

• METRIC 6: Lack of Cohesion of Methods (LCOM)

LCOM measures the degree of similarity of methods by instance variable or attributes. Any measure
of separateness of methods helps identify flaws in the design of classes. There are at least two
different ways of measuring cohesion:

1. Calculate for each data field in a class what percentage of the methods use that data field.
Average the percentages then subtract from 100%. Lower percentages mean greater
cohesion of data and methods in the class.

2. Methods are more similar if they operate on the same attributes. Count the number of
disjoint sets produced from the intersection of the sets of attributes used by the methods.

High cohesion indicates good class subdivision. Lack of cohesion or low cohesion increases
complexity, thereby increasing the likelihood of errors during the development process. Classes with
low cohesion could probably be subdivided into two or more subclasses with increased cohesion. This
metric evaluates the design implementation s well as reusability.

C.1.4 Coupling
Coupling is a measure of the strength of association established by a connection from one entity to another.
Classes (objects) are coupled three ways:

1. When a message is passed between objects, the objects are said to be coupled [B4, Figure 7].

 page 10

2. Classes are coupled when methods declared in one class use methods or attributes of the other
classes.

3. Inheritance introduces significant tight coupling between superclasses and their subclasses
 [APP B.3]. (Since good object-oriented design requires a balance between coupling and
 inheritance, coupling measures focus on non-inheritance coupling.)

The next object-oriented metric measures coupling strength.

• METRIC 7: Coupling Between Object Classes (CBO)

CBO is a count of the number of other classes to which a class is coupled. It is measured by counting
the number of distinct non-inheritance related class hierarchies on which a class depends. Excessive
coupling is detrimental to modular design and prevents reuse. The more independent a class is, the
easier it is reuse in another application. The larger the number of couples, the higher the sensitivity
to changes in other parts of the design and therefore maintenance is more difficult. Strong coupling
complicates a system since a module is harder to understand, change or correct by itself if it is
interrelated with other modules. Complexity can be reduced by designing systems with the weakest
possible coupling between modules. This improves modularity and promotes encapsulation. CBO
evaluates design implementation and reusability.

C.2 Inheritance
Another design abstraction in object-oriented systems is the use of inheritance. Inheritance is a type of
relationship among classes that enables programmers to reuse previously defined objects including variables
and operators [APP B.3, Figure 6]. Inheritance decreases complexity by reducing the number of operations
and operators, but this abstraction of objects can make maintenance and design difficult. The two metrics used
to measure the amount of inheritance are the depth and breadth of the inheritance hierarchy.

• METRIC 8: Depth of Inheritance Tree (DIT)

The depth of a class within the inheritance hierarchy is the maximum length from the class node to
the root of the tree and is measured by the number of ancestor classes. The deeper a class is within
the hierarchy, the greater the number methods it is likely to inherit making it more complex to predict
its behavior. Deeper trees constitute greater design complexity, since more methods and classes are
involved, but the greater the potential for reuse of inherited methods. A support metric for DIT is the
number of methods inherited (NMI). This metric primarily evaluates reuse but also relates to
understandability and testability.

• METRIC 9: Number of Children (NOC)

The number of children is the number of immediate subclasses subordinate to a class in the hierarchy.
It is an indicator of the potential influence a class can have on the design and on the system. The
greater the number of children, the greater the likelihood of improper abstraction of the parent and
may be a case of misuse of subclassing. But the greater the number of children, the greater the reuse
since inheritance is a form of reuse. If a class has a large number of children, it may require more
testing of the methods of that class, thus increase the testing time. NOC, therefore, primarily
evaluates testability and design.

D. Object-Oriented Metrics Example

Object-Oriented design requires a different way of thinking. In order to demonstrate the concepts of object-
oriented and how the suggested metrics could be applied, the example in Figure 2 was developed. Convex Set,
which is the set of all geometric figures, is a superclass. Convex Set has an operation to draw the specified
figures and uses drawing methods found in another super set not shown here. From this, we can develop two

 page 11

subclasses, polygon and ellipse; these become classes since they have children objects that are subclasses.
Polygon contains a method to calculate the perimeter. This equation is accessible to all child objects.
Following the hierarchy to equilateral, through inheritance we know it is a closed figure (convex set) of
straight lines (polygon) with 3 sides and sum of the interior angles is 180 (triangle). If we create an
equilateral triangle with the side length of 5, it is called an instantiation of the equilateral object.

Convex Set

End pts meet
(closed)

operation:
 draw element

 Polygon

union line seg.

method:
 perimeter=
∑ of line seg.

Ellipse

curved surface

Triangle

3 sides
∑ angles = 180

method:
 area =
½ base*height

Quadrilateral

4 sides
∑ angles = 360

 Circle

 symmetrical to pt.

 method:
 circumference=
∏ radius*radius

Scalene

no sides equal

Isosceles

2 sides equal
2 angles equal

Equilateral

3 sides equal
3 angles equal

Instantiation: side = 5

Figure 2: Geometric Classes with Attributes, Operations and Methods

 page 12

The eight metrics discussed in Section IV.C can now be applied to this example. Since the object
EQUILATERAL is a child of TRIANGLE/POLYGON, the formula for the perimeter is accessible. (A
message is used to transfer the value to the equation so the perimeter can be calculated.) From TRIANGLE,
the attribute of 3 sides is inherited. Since EQUILATERAL has the attribute that all sides are equal, the
equation for the perimeter will be modified to 3 times the length of the side. Before applying the equation, an
instantiation of the TRIANGLE object must be created. This is where the actual value(s) are assigned, and the
length of the side, X, is stored. The pseudocode for the method to determine the perimeter of an equilateral
triangle in Figure 3.

STEPS:

Create instantiation of equilateral triangle
Assign the length of the side ==> X
Send message to class POLYGON for perimeter equation

 If X > 0 {* hence a valid measurement *}
 then
 perimeter = 3*X {* inherited from polygon *}
 else send error message

Figure 3: Method for perimeter of equilateral triangle

• METRIC 1: Cyclomatic Complexity
This is an evaluation of the algorithm using a count of the number of test paths. There is one vertical
path that spits into a second possible path, giving the method a cyclomatic complexity of 2.

• METRIC 2: Count of Lines
For the pseudocode, the easiest line count is by executable statements, which is 6, total lines of code is 8,
with 1 blank and 2 comments.

• METRIC 3: Comment Percentage
 Comment percentage = 2/(8-1) = 29%

• METRIC 4: Weighted Methods per Class (WMC)

This metric counts the number of methods per class, so each class will have a different value for WMC.
We can reference Figure 2 to evaluate the WMC for two classes below:
 Class: POLYGON = count of number of methods = 2
 Class: QUADRILATERAL = 1

If text was given for each method, we could sum their cyclomatic complexity within the class, allowing us
to weight the methods for a more realistic evaluation.

• METRIC 5: Response for a Class (RFC)
For RFC we need the to sum the number of methods that can be invoked in response to a message,
including all methods accessible within the class hierarchy. Using the POLYGON class, for perimeter, 5
objects could invoke that method, and the method area (in TRIANGLE) could invoke 3 messages, so the
RFC for POLYGON is 8.

 Class: POLYGON = number of messages for method (perimeter) = 5 +
 number of messages for method (area) = 3 ==> RFC = 8

 page 13

• METRIC 6: Lack of Cohesion of Methods (LCOM)
We can apply this metric to two different classes for examples of low and higher cohesion. Looking at the
degree of similarity between POLYGON and ELLIPSE, we observe that the intersection of the sets of
attributes of each is a disjoint set, there are no attributes in common. (POLYGON = {union of line
segments}; ELLIPSE = {curved surface}) This implies low cohesion between these classes and the
design might be better if these classes were not related through CONVEX SET. Looking at the classes
TRIANGLE and QUADRILATERAL, we observe their attributes are the same, {sides, angles}, forming a
common set and implying high cohesion and a good design.

• METRIC 7: Coupling between Object Classes (COB)
COB is measured by counting the number of non-inherited related class hierarchies on which a class
depends. For the class Polygon, all coupling is within the class (messages to inherited methods do not
count), so the COB = 0. If we look at the class Convex Set, the operation Draw Element, this links to
outside the class where the drawing software resides, implying high coupling and suggesting this
operation and class should be separate. (Note - this separation was also suggested by Metric 5, LCOM.)

• METRIC 8: Depth of Inheritance Tree (DIT)
The depth is measured by the maximum length from the class node to the root of the tree. For
POLYGON, DIT = 2, it is 1 level below the CONVEX SET. For TRIANGLE, DIT = 1.

• METRIC 9: Number of Children (NOC)
This metric is a count of the number of children of a class. For the class POLYGON, NOC = 2; for
TRIANGLE, NOC = 3.

D. Summary

D.1 Metrics Summary
In addition to assessing the software attributes related to software quality as specified in Section IV.A,
software metrics should meet certain theoretical criteria. These criteria are specified in terms of the object-
oriented structures to which the metrics are to be applied.

• Noncoarseness - Not every class can have the same value for a metric, otherwise it has lost its
value as a measurement.

• Nonuniqueness (notion of equivalence) - Two classes can have the same metric value (i.e., two
classes are equally complex).

• Design details are important - Even though two class designs perform the same function, the
details of the design matter in determining the metric for the class.

• Monotonicity - The metric for the combination of two classes can never be less than the metric
for either of the component classes.

• Nonequivalence of interaction - The interaction between two classes can be different between two
other classes resulting in different complexity values for the combination.

• Interaction increases complexity - When two classes are combined, the interaction between
classes can increase the complexity metric value.

Although the proposed metrics meet these criteria, we will not demonstrate that in this report.

Table 2 summarizes the eight metrics recommended for object-oriented systems. They cover the key concepts
for object-oriented designs: methods, classes (cohesion), coupling, and inheritance.

Metrics for object-oriented systems is a relatively new field of study. Although some numeric thresholds are
suggested by COTS developers, there is little (if any) application data to justify them. Table 2 instead gives a
general interpretation for the metrics (e.g. larger numbers denote application specificity).

 page 14

METRIC OBJECT-
ORIENTED
FEATURE

CONCEPT MEASUREMENT METHOD INTERPRETATION

CC Cyclomatic
complexity

Method Complexity # algorithmic test paths Low => decisions deferred through message
passing
Low not necessarily less complex

SIZE Lines of Code Method Complexity # physical lines, statements, and/or
comments

Should be small

COM Comment
Percentage

Method Usability
Reusability

comments divided by the total line
count less # blank lines

~ 20 - 30 %

WMC Weighted
methods per
class

Class/Method Complexity
Usability
Reusability

1) # methods implemented within a
class
2) Sum of complexity of methods

Larger => greater potential impact on
children through inheritance; application
specific

RFC Response for a
class

Class/Method Design
Usability
Testability

methods invoked in response to a
message

Larger => greater complexity and decreased
understandability; testing and debugging
more complicated

LCOM Lack of cohesion
of methods

Class/Cohesion Design
Reusability

Similarity of methods within a class
by attributes

High => good class subdivision
Low => increased complexity - subdivide

CBO Coupling
between objects

Coupling Design
Reusability

distinct non-inherited related
classes inherited

High => poor design; difficult to understand;
decreased reuse; increase maintenance

DIT Depth of
inheritance tree

Inheritance Reusability
Understandability
testability

Maximum length from class node to
root

Higher => more complex; more reuse

NOC Number of
children

Inheritance Design # immediate subclass Higher => more reuse; poor design increasing
testing

Table 2: Object-oriented Metrics Summary

 page 15

D.2 COTS Support
As noted earlier, some of the object-oriented metrics, although producing valuable insights to the software,
may be difficult to collect electronically. The SATC surveyed approximately 12 object-oriented software
analysis COTS to determine which of the suggested object-oriented metrics were supported. Some packages
advertise object-oriented metrics, but only traditional metrics were applied with no alterations. Although most
of the actual object-oriented packages offered a variety of metrics, only the eight metrics proposed in this
report are noted. Some of the packages used different names for the metrics, but the description matched. As
denoted in the chart, some packages used diagrams to indicate the metrics, other metrics were not specified but
could be derived. The complete list of packages surveyed is in Appendix D.

TOOL
CC SIZE COM WMC RFC LCOM CBO DIT NOC

ADAMET N N C ? C C
Flexsys N N C N N N ? N N
McCabe N N N N N N N N N
ParaSET D D D D D
PR:QA ? N N N N N
UX Metrics N N N C C C ? N N

N = Number provided
C = Can be calculated
D = Diagram only

Table 4: COTS Support Object-Oriented Metrics

V. CONCLUSIONS

The SATC has proposed nine metrics for object-oriented systems. They cover the key concepts for object-
oriented designs: methods, classes (cohesion), coupling, and inheritance. The metrics are to be applied to the
evaluation of the following software qualities:

• Efficiency of the implementation of the design - Were the constructs efficiently designed?
• Complexity - Could the constructs be used more effectively to decrease the architectural complexity?
• Understandability/Usability - Does the design increase the psychological complexity?
• Reusability/Application specific - Is the design application specific?
• Testability/Maintenance - Does the structure enhance testing?

Future work will be to define criteria for the metrics. That is, acceptable ranges for each metric will have to
developed, based on the effect of the metric on desirable software qualities. The SATC will first develop a
database of the metrics from actual code, to understand a “normal” range, and then evaluate the impact on
system reliability and maintainability of deviations from that range. (NOTE: the above may be overly
simplistic.)

 page 16

APPENDIX A: COMPREHENSIVE LISTING OF OBJECT-ORIENTED METRICS

METRIC STRUCTURE

ACM attribute complexity metric Class
CBO coupling between object classes Coupling
CC McCabe’s cyclomatic complexity Method
CC class complexity Coupling
CC2 progeny count Class
CC3 parent count Class
CCM class coupling metric Coupling
CCO class cohesion Class
CCP class coupling Coupling
CM cohesion metric Class
DAC data abstraction coupling Class
DIT depth of inheritance tree Inheritance
FAN fan-in Class
FFU friend function Class
FOC function- oriented code Class
GUS global usage Class
HNL hierarchy nesting level Inheritance
IVU instance variable usage Class
LCOM lack of cohesion of methods Class
LOC lines of code Method
MCX method complexity Method
MPC message passing coupling Coupling
MUI multiple inheritance Inheritance
NCM number of class methods Class
NCV number of class variables Class
NIM number of instance methods Class
NIV number of instance variables Class
NMA number of methods added Inheritance
NMI number of methods inherited Inheritance
NMO number of methods overridden Inheritance
NOC number of children Inheritance
NOM number of message sends Method
NOM number of local methods Class
NOT number of tramps Coupling
OACM operation argument complexity metric Class
OCM operation coupling metric Coupling
OXM operation complexity metric Class
PIM number of public instance methods Class
PPM parameters per methods Class
RFC raw function counts Class
RFC response for a class Class
SIX specialization index Inheritance
SIZE1 language dependent delimiter Method
SIZE2 number of attributes + number of local methods Class
SSM Halstead software science metrics Method
VOD violations of the Law of Demeter Coupling
WAC weighted attributes per class Class
WMC weighted methods per class Class

 page 17

APPENDIX B: OBJECT-ORIENTED ANALYSIS AND DESIGN

APP B.1 Objects

An object-oriented system is an organized collection of cooperative objects representing real world entities.
Amongst the most prominent qualities of an object-oriented design system are:
• Understanding of the system is easier as the semantic between the system and reality is small.
• Modifications to the model tend to be local as they often result from an individual item, represented by a

single object.
• Reuse is often enhanced through the independence of the items.
Object-oriented design interconnects data items (objects) and processing operations (messages) such that
information and processes are modularized.

An object is an entity which has a state/attributes (whose representation is hidden) and a defined set of
operations which operate on that state. Objects are initially identified by examining the problem statement or
by grammatically parsing the system description and identifying each noun or noun clause as possible objects.
If an object is required to implement a solution, then it is part of the solution space; otherwise, if an object is
necessary only to describe a solution, it is part of the problem space.
The notation used to represent an object is shown in Figure 4.

Object Name

attributes

operations

Figure 4 - Notation for an Object

APP B.1.1 State/Attributes

The state is represented as a set of object attributes. Attributes describe and define an object by clarifying
what is meant by the object in the context of the problem space. To develop a meaningful set of attributes for
an object, the analyst can refer to the system description and select those things that reasonably “belong” to the
object. The following question should be answered for each object: What data items fully define this object in
the context of the problem at hand?

APP B.1.2 Operations

The operations contain control and procedural constructs that may be invoked by a message - a request to the
object to perform one of its operations. An operation changes an object in some way; specifically, it changes
one or more attribute values that are contained within the object. Operations can generally be divided into
three broad categories: 1) operations that manipulate data in some way; 2) operations that perform a
calculation; 3) operations that monitor an object for the occurrence of a controlling event. Operations are
identified by examining all verbs stated in the processing narrative within the system description.

APP B.1.3 Object Example

Figure 5 shows an example of an object. The name of the Object is Chair, it has the attributes of cost,
dimensions, weight, location and color, and the operations are buy, sell, weigh, and move.

 page 18

Object: Chair

cost
dimensions
weight
location
color

buy
sell
weigh
move

Figure 5 - Sample Object

The object’s behavior and information are stored within the object (encapsulated) and can only be
manipulated when the object is ordered to perform operations. This encapsulation supports information
hiding. The attributes that are visible to the outside (e.g., cost) are the specification part, but each object also
has a private or body part that is hidden from the outside. At the design stage, the implementation details of
the private part are not yet specified, these usually are added at runtime (e.g. chair cost = $45.32). The
designer’s conception of the object chair may be as shown in Figure 6; in actuality, the private part is never
shown.

 Chair

SPECIFICATION PRIVATE
cost $42.43
dimensions 5”x35”x24”
location Lanham 3
color blue/white

 buy
 sell
 weigh
 move

Figure 6: Conceptual View of an Object’s Attributes

APP B.2 Class

Chair is a member (the term instance is commonly used) of a much larger class of objects called Furniture. A
set of generic attributes can be associated with every object in the class of furniture. Because chair is a
member of the class of furniture, the chair inherits all attributes defined for the class. Once the class has been
defined, the attributes can be reused when new instances of the class are created, such as for the object table.
These concepts are demonstrated in Figure 7. In the figure, the inherited attributes for chair and table are re-
written in each object, normally they are assumed and not listed.

 page 19

Object:
 Chair

cost
dimensions
weight
location
color

buy
sell
weigh
move

Object:
 Table

cost
dimensions
weight
location
color

buy
sell
weigh
move

Class:
 Furniture

cost
dimensions
weight
location
color

buy
sell
weigh
move

Figure 7: Class Furniture with Objects and Inherited Attributes and Operations

APP B.3 Inheritance

Object instatiation is when an object inherits the attributes and operations of their class. Object classes can
also be objects (called super-classes) and inheritance networks can be established. An inheritance
hierarchy or tree is created when a class can inherit attributes from a single super class as demonstrated in
Figure 8. Note inherited attributes are not shown. Project manager has all attributes of Manager and
Employee (super-class) but they are not repeated and the state representation is hidden (i.e. specifically
information such as address).

 page 20

Employee

Name
Address
Salary
Manager

Manager

Dept
Staff
Grade

Programmer

Project
Languages

Project
manager

Project
Date appt

Figure 8: Inheritance Network

Inheritance is a form of reuse and can decrease the complexity by reducing the number of operations and
operands. It is also an abstraction technique and provides classification information about system entities.
Inheritance is invaluable in prototyping as it permits code reuse and allows rapid changes to be made to an
object without side effects which corrupt other parts of the system. However, constructing a consistent
inheritance hierarchy without duplicating attributes, and attributes and operations at the right level of
abstraction, is difficult. Although inheritance can be a useful abstraction technique to show relationships
between the design types, but it is not essential in object-oriented design. Some designers prefer to apply
inheritance during implementation instead of design to reduce misunderstanding when reading the design;
without inheritance, all operations and attributes of an object class must be specifically stated.

Encapsulation and inheritance are both essential within object-oriented programming; they are somewhat
incompatible with each other however. Encapsulation means that the one object using a class should not see
its internal representation. But if we regard a descendant of a class as a user of the class, then the user has
complete access to the internal parts of the class (through inheritance). This contradiction is due to the fact
that we have three types of user: those who use the class via its interface, those who use the class through
inheritance, and those who actually implement the class. In C++, therefore, three possibilities for
encapsulation of operations and data structures are used: “public” means that all three user types can access
the class operations, “protected” means that only the class itself or descendants of the class can access the parts
of the class, “private” means that only the class itself can access the parts. Of course, there three types are
combined when a class is developed.

APP B.4 Messages

Objects communicate by passing messages to each other and these messages initiate object operations. A
message usually is implemented as a procedure or function call. It has two parts: 1) the name of the service
requested by the call object; 2) copies of the information (usually in the form of variables) from the calling
object needed to execute the service and the holder of the results. Communication by exchanging messages
rather than shared variables eliminates shared data areas. This reduces overall system coupling as there is no
possibility of unexpected modifications to shared information. The receiver (object) responds to the message

 page 21

by first choosing the operation that implements the message name, executing this operation, then returning
control to the caller.

Using Figure 9, four objects A, B, C, and D, communicate with one another by passing messages. For
example, if object B required processing associated with operation op10 of object D, it would send D a
message that would take the form:

message: (destination, operation, arguments)

where “destination” defines the object (in this case, object D) to receive the message, “operation” refers to the
operation that is to receive the message (op10), and the “arguments” provides information that is required for
the operation to be successful. This message couples object B and Object D. As part of the execution of op10,
object D may send a message to object C of the form:

message: (C, op8, <data>)

C finds op8, performs it, and then returns control to D. Operation op10 completes and control is returned to
B.

 A

o p 1
o p 2

 B

o p 3
o p 4
o p 5

 D

o p 1 0
o p 1 1

 C

o p 6
o p 7
o p 8
o p 9

 Figure 9: Message Passing

APP B.5 Cohesion

Cohesion refers to the internal consistency within the parts of the design. Cohesion is centered on data that is
encapsulated within an object and on how methods interact with data to provide well-bounded behavior.
Degree of similarity of methods is a major aspect of object class cohesiveness. The objective is to achieve
maximum cohesion. Programs that are adaptable and reusable are low in coupling and high in cohesion.

APP B.6 Polymorphism

Polymorphism is a very important concept that allows flexible systems to be built. This concept allows
developers to specify what shall occur and not how it shall occur. Polymorphism means having the ability to
take several forms. For object-oriented systems, polymorphism allows the implementation of a given operation
to be dependent on the object that contains the operation; an operation can be implemented in different ways in

 page 22

different classes. The sender instance of the message does not need to know the receiving instance class. The
sender provides only a request for a specific operation, while the receiver knows how to perform the operation.
The message can be interpreted different ways, dependent on the receivers class. It is, therefore, the instance
which receives the message that determines its interpretation, and not the transmitting instance.
Polymorphism assist programmers to reduce complexity because:
• Programmers do not have to comprehend or even be aware of existing operations to add a new operation.
• Programmers do not have to consider methods that are part of the object when naming the operation
• Programmers can preserve the semantics of the operation within the object and provide common

interfaces to types of objects that are similar.

APP B.7 Object-Oriented Languages

Object-oriented design is not the same as object oriented programming. Object-oriented languages specifically
support the features of object-oriented design, but the design can be implemented in any language. C++ and
Smalltalk are object-oriented languages, specifically supporting all constructs. Ada is not an object-oriented
language, it does not support polymorphism and inheritance but can be used for object-oriented designs.

APP B.8 Terminology

Aggregate object (aggregation) - An object composed of two or more other objects. An object that is part of
two or more other objects.

Attribute - A variable or parameter that is encapsulated into an object.
Class - A set of objects that share a common structure and common behavior manifested by a set of methods;

the set serves as a template from which objects can be created.
Class Structure - A graph whose vertices rep[resent classes and whose arcs represent relationships among

these classes.
Cohesion - The degree to which the methods within a class are related to one another.
Collaborating classes - If a class sends a message to another class, the classes are said to be collaborating.
Coupling - Object X is coupled to object Y if and only if X sends a message to Y.
Encapsulation - The process of bundling together the elements of an abstraction that constitute its structure

and behavior.
Information hiding - The process of hiding the structure of an object and the implementation details of its

methods. An object has a public interface and a private representation; these two elements are kept
distinct.

Inheritance - A relationship among classes, wherein one class shares the structure or methods defined in on
(for single inheritance) or more (for multiple inheritance) other classes.

Instance - An object with specific structure, specific methods, and an identity.
Instantiation - The process of filling in the template of a generic class to produce a class from which one can

create instances.
Message - A request that an object makes of another object to perform an operation.
Method - An operation upon on object, defined as part of the declaration of a class. Methods are operation,

but not all operations are actual methods declared for a specific class.
Object - An instantiation of some class which is able to save a state (information) and which offers a number

of operations to examine or that affect this state.
Polymorphism - The ability of an object to interpret a message differently at execution depending upon the

superclass of the calling object.
Superclass - The class from which another class inherits its attributes and methods.

 page 23

APPENDIX C: METRIC PACKAGES

AdaMET, Dynamics Research Corporation, Andover, MA.

Checkpoint, Software Productivity Research, Burlington, MA. (No Object-oriented metrics)

DecisionVision, Software Business Management, Westford, MA. (No Object-oriented metrics)

Logicore Software Development Environment, Logicon, Arlington, VA. (No Object-oriented metrics)

MetKit, Bramer Ltd., Fleet, Hants, UK. (No Object-oriented metrics)

McCabe Object-Oriented Tool, McCabe & Associates, Columbia, MD.

ParaSET, Software Emancipation Technology, Inc., Lexington, MA.

PR:QA, ASTA Incorporated, Nashua, NH.

Rational Environment, Rational, Bethesda, MD. (No Object-oriented metrics)

Spiders-3, Statistica, Inc., Rockville, MD. (No Object-oriented metrics)

UX-Metrics, Set Laboratories Inc., Mulino, OR.

 page 24

APPENDIX D: OBJECT-ORIENTED REFERENCES

Booch, Grady, Object-oriented Analysis and Design with Applications, The Benjamin/Cummings Publishing
Company, Inc., 1994.

Chidamber, Shyam and Kemerer, Chris, “A Metrics Suite for Object-Oriented Design”, IEEE Transactions on
Software Engineering, June, 1994, pp. 476-492.

Hudli, r., Hoskins, C., Hudli, A., “Software Metrics for Object-oriented Designs”, IEEE, 1994.

Jacobson, Ivar, Object-oriented Software Engineering, A Use Case Driven Approach, Addison-Wesley
Publishing Company, 1993.

Lee, Y., Liang, B., Wang, F., “Some Complexity Metrics for Object-Oriented Programs Based on Information
Flow”, Proceedings: CompEuro, March, 1993, pp. 302-310.

Lorenz, Mark and Kidd, Jeff, Object-Oriented Software Metrics, Prentice Hall Publishing, 1994.

Pressman, Roger S., Software Engineering, A Practitioner’s Approach, McGraw-Hill Publishing, 19xx.

Sommerville, Ian, Software Engineering, Addison-Wesley Publishing Company, 1992.

Sharble, Robert, and Cohen, Samuel, “The Object-Oriented Brewery: A Comparison of Two Object-Oriented
Development Methods”, Software Engineering Notes, Vol 18, No 2., April 1993, pp 60 -73.

Stinson, Michael, and Archer, Clark, “Object-Oriented Software Measures: The State of the Art”,
Proceedings: Software Technology Conference, April, 1995.

Tegarden, D., Sheetz, S., Monarchi, D., “Effectiveness of Traditional Software Metrics for Object-Oriented
Systems”, Proceedings: 25th Hawaii International Conference on System Sciences, January, 1992, pp. 359-
368.

Williams, John D., “Metrics for Object-Oriented Projects”, Proceedings: ObjectExpoEuro Conference, July,
1993, pp. 13-18.

